A model for deriving voxel-level tree leaf area density estimates from ground-based LiDAR
نویسندگان
چکیده
Forest canopy structure has long been known to be a major driver of the processes regulating the exchange of CO2 and water vapour between terrestrial ecosystems and the atmosphere. It is also an important driver of terrestrial vegetation dynamics. Information about fine-scale ecosystem structure is needed to better understand and predict how terrestrial ecosystems respond to and affect environmental change. LiDAR remote sensing from ground-based instruments is a promising technology for providing such information, and physically-based models are ideally suited to process the data and derive reliable products. While complex ray tracing algorithms have been developed to help in the interpretation of LiDAR data, none of these tools are currently widely available. In this paper we present the VoxLAD model; a parametric model using computational geometry that allows to compute estimates of leaf area density at the voxel scale on the basis of terrestrial LiDAR data. This modelling framework removes the need to compute the exact point of entry and exit into and out of the voxels for all individual laser pulses, and thus allows for easier usage. The model requires that each point in the LiDAR point cloud should be classified as wood, foliage, or noise. Here we provide the algorithmic details of the model, and demonstrate that the output of the model closely fits the output of a model using more complex ray
منابع مشابه
Estimating Leaf Area Density of Individual Trees Using the Point Cloud Segmentation of Terrestrial LiDAR Data and a Voxel-Based Model
The leaf area density (LAD) within a tree canopy is very important for the understanding and modeling of photosynthetic studies of the tree. Terrestrial light detection and ranging (LiDAR) has been applied to obtain the three-dimensional structural properties of vegetation and estimate the LAD. However, there is concern about the efficiency of available approaches. Thus, the objective of this s...
متن کاملSimulated full-waveform LiDAR compared to Riegl VZ-400 terrestrial laser scans
A 3-D Monte Carlo ray-tracing simulation of LiDAR propagation models the reflection, transmission and absorption interactions of laser energy with materials in a simulated scene. In this presentation, a model scene consisting of a single Victorian Boxwood (Pittosporum undulatum) tree is generated by the high-fidelity tree voxel model VoxLAD using high-spatial resolution point cloud data from a ...
متن کاملFactors contributing to accuracy in the estimation of the woody canopy leaf area density profile using 3D portable lidar imaging.
Factors that contribute to the accuracy of estimating woody canopy's leaf area density (LAD) using 3D portable lidar imaging were investigated. The 3D point cloud data for a Japanese zelkova canopy [Zelkova serrata (Thunberg) Makino] were collected using a portable scanning lidar from several points established on the ground and at 10 m above the ground. The LAD profiles were computed using vox...
متن کاملMapping urban forest leaf area index with airborne lidar using penetration metrics and allometry
a r t i c l e i n f o Keywords: Airborne lidar Leaf area index Urban ecosystem analysis Hemispherical photography Allometry Vegetation structure In urban areas, leaf area index (LAI) is a key ecosystem structural attribute with implications for energy and water balance, gas exchange, and anthropogenic energy use. In this study, we estimated LAI spatially using airborne lidar in downtown Santa B...
متن کاملUsing airborne lidar to predict Leaf Area Index in cottonwood trees and refine riparian water-use estimates
Estimation of riparian forest structural attributes, such as the Leaf Area Index (LAI), is an important step in identifying the amount of water use in riparian forest areas. In this study, small-footprint lidar data were used to estimate biophysical properties of young, mature, and old cottonwood trees in the Upper San Pedro River Basin, Arizona, USA. Canopy height and maximum and mean laser he...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Modelling and Software
دوره 51 شماره
صفحات -
تاریخ انتشار 2014